Pinprick-evoked brain potentials: a novel tool to assess central sensitization of nociceptive pathways in humans.
نویسندگان
چکیده
Although hyperalgesia to mechanical stimuli is a frequent sign in patients with inflammation or neuropathic pain, there is to date no objective electrophysiological measure for its evaluation in the clinical routine. Here we describe a technique for recording the electroencephalographic (EEG) responses elicited by mechanical stimulation with a flat-tip probe (diameter 0.25 mm, force 128 mN). Such probes activate Aδ nociceptors and are widely used to assess the presence of secondary hyperalgesia, a psychophysical correlate of sensitization in the nociceptive system. The corresponding pinprick-evoked potentials (PEPs) were recorded in 10 subjects during stimulation of the right and left hand dorsum before and after intradermal injection of capsaicin into the right hand and in 1 patient with a selective lesion of the right spinothalamic tract. PEPs in response to stimulation of normal skin were characterized by a vertex negative-positive (NP) complex, with N/P latencies and amplitudes of 111/245 ms and 3.5/11 μV, respectively. All subjects developed a robust capsaicin-induced increase in the pain elicited by pinprick stimulation of the secondary hyperalgesic area (+91.5%, P < 0.005). Such stimulation also resulted in a significant increase of the N-wave amplitude (+92.9%, P < 0.005), but not of the P wave (+6.6%, P = 0.61). In the patient, PEPs during stimulation of the hypoalgesic side were reduced. These results indicate that PEPs 1) reflect cortical activities triggered by somatosensory input transmitted in Aδ primary sensory afferents and spinothalamic projection neurons, 2) allow quantification of experimentally induced secondary mechanical hyperalgesia, and 3) have the potential to become a diagnostic tool to substantiate mechanical hyperalgesia in patients with presumed central sensitization.
منابع مشابه
Central Sensitization of Mechanical Nociceptive Pathways Is Associated with a Long-Lasting Increase of Pinprick-Evoked Brain Potentials
Intense or sustained nociceptor activation, occurring, for example, after skin injury, can induce "central sensitization," i.e., an increased responsiveness of nociceptive neurons in the central nervous system. A hallmark of central sensitization is increased mechanical pinprick sensitivity in the area surrounding the injured skin. The aim of the present study was to identify changes in brain a...
متن کاملCharacterizing pinprick-evoked brain potentials before and after experimentally induced secondary hyperalgesia.
Secondary hyperalgesia is believed to be a key feature of "central sensitization" and is characterized by enhanced pain to mechanical nociceptive stimuli. The aim of the present study was to characterize, using EEG, the effects of pinprick stimulation intensity on the magnitude of pinprick-elicited brain potentials [event-related potentials (ERPs)] before and after secondary hyperalgesia induce...
متن کاملNeural correlates of heterotopic facilitation induced after high frequency electrical stimulation of nociceptive pathways
BACKGROUND High frequency electrical stimulation (HFS) of primary nociceptive afferents in humans induce a heightened sensitivity in the surrounding non-stimulated skin area. Several studies suggest that this heterotopic effect is the result of central (spinal) plasticity. The aim of this study is to investigate HFS-induced central plasticity of sensory processing at the level of the brain usin...
متن کاملUnmyelinated trigeminal pathways as assessed by laser stimuli in humans.
Laser pulses excite superficial free nerve endings innervated by small-myelinated (Adelta) and unmyelinated (C) fibres. Whereas laser-evoked scalp potentials (LEPs) are now reliably used to assess function of the Adelta-fibre nociceptive pathways in patients with peripheral or central lesions, the selective activation of C-fibre receptors and recording of the related brain potentials remain dif...
متن کاملReliability of Motor Evoked Potentials Induced by Transcranial Magnetic Stimulation: The Effects of Initial Motor Evoked Potentials Removal
Introduction: Transcranial magnetic stimulation (TMS) is a useful tool for assessment of corticospinal excitability (CSE) changes in both healthy individuals and patients with brain disorders. The usefulness of TMS-elicited motor evoked potentials (MEPs) for the assessment of CSE in a clinical context depends on their intra-and inter-session reliability. This study aimed to evaluate if removal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 110 5 شماره
صفحات -
تاریخ انتشار 2013